# 35t April 4-8 Noise Tests

20160411 - 35t - B.Kirby

#### Overview

- Reminder of noise issues
- Noise tests to date
- April 4-8 noise tests
  - ~11kHz Correlated Noise Removal
  - Low-noise "everything off" tests understand best case performance
  - "High-noise state" tests
- Summary and plans

#### 35t TPC Readout - Main Noise Issues

- Two main problems with TPC readout noise (in order of importance):
  - Noise levels are not stable: all FEMB channels have some chance to jump into a "high-noise" state that can only be removed by power-cycling the ASICs
  - Noise levels are high: when the readout is not in a bad state the noise levels are still high

## Noise Issues - "High Noise" State

- Two main problems with TPC readout noise:
  - Noise levels are not stable: all FEMB channels have some chance to jump into a "high-noise" state that can only be removed by power-cycling the ASICs (only started after 35t filled)
  - Noise levels are high: when the readout is not in a bad state the noise levels are still high



### Noise Issues - Noise Levels are High

Measured Pulse Heights for 85mV Pulser Signal



Measured Pedestal RMS,

**Correlated Noise Subtracted** 

#### Noise Tests to Date

- Significant work done to understand and reduce 35t noise
- Feb 17 : "Everything off" test
- Feb 18-23 : Stability and configuration scans
  - https://indico.fnal.gov/conferenceDisplay.py?confld=10711
- March 4: 2nd "Everything off" test identified variation in noise between APAs
  - https://dl.dropboxusercontent.com/u/10099840/LBNE/2016\_35t/20150304\_NoiseHunting.pdf
- March 30-April 4 : Extended single-FEMB stability test
  - o ELOGs 8701, 8760
- April 4-8 : Recent noise tests

#### Noise Tests to Date - Variation Between APAs

- Run 14598 is last run recorded before March 4 noise tests (ELOG 7268)
  - FE-ASIC settings gain = 14mV/fC, shaping time = 3us
- See significant difference in noise levels between APAs (note this run taken with all non-TPC systems on)

| Run   | APA  | Collection Noise (ENC) | Induction Noise<br>(ENC) | Collection Noise 11kHz<br>Subtracted | Induction Noise<br>11kHz Subtracted |
|-------|------|------------------------|--------------------------|--------------------------------------|-------------------------------------|
| 14598 | APA0 | 3400e-                 | 4530e-                   | 2140e-                               | 2510e-                              |
| 14598 | APA1 | 2180e-                 | 2790e-                   | 1070e-                               | 1950e-                              |
| 14598 | APA2 | 2950e-                 | 3750e-                   | 1970e-                               | 2630e-                              |
| 14598 | APA3 | 2130e-                 | 3130e-                   | 1530e-                               | 2890e-                              |

#### Noise Tests to Date - Non-TPC Noise Sources

 March 4 test: non-TPC systems turned on one at a time to measure contribution to noise, looking at "quiet" APA1

| Run   | Settings                    | Collection<br>Noise (ENC) | Induction<br>Noise (ENC) | Collection Noise<br>11kHz Subtracted | Induction Noise<br>11kHz Subtracted |
|-------|-----------------------------|---------------------------|--------------------------|--------------------------------------|-------------------------------------|
| 14623 | 14mV/fC, 3us                | 1910e-                    | 2430e-                   | 610e-                                | 1120e-                              |
| 14628 | 14mV/fC, 3us<br>SSPs on     | 2060e-                    | 2540e-                   | 670e-                                | 1270e-                              |
| 14629 | 14mV/fC, 3us<br>Counters in | 2060e-                    | 2550e-                   | 680e-                                | 1280e-                              |
| 14630 | 14mV/fC, 3us<br>APA bias on | 2070e-                    | 2620e-                   | 725e-                                | 1430e-                              |
| 14663 | 14mV/fC, 3us<br>Drift on    | 2160e-                    | 2760e-                   | 740e-                                | 1500e-                              |

## Noise Tests to Date - Extended Stability Test

- During 35t physics run, had significant stability issues with detector randomly going into high-noise state
  - Several different causes: run start, turning on FEMB ASICs, sometimes in middle of a run
  - 3-board ASICs turned off to prevent detector constantly going into "high noise" state
  - Detector noise generally normal for 1-2 hours
  - Problem became worse as drift field increased
- Performed an extended single FEMB stability test at end of 35t physics datataking
- Only FEMB04 ASICs turned on from March 30 to April 4
  - Drift field at 120kV, wire-bias at nominal values
- High-noise state did not occur at all

### April 4-8 Noise Tests

- ~11kHz Correlated Noise Removal
- Low-noise "everything off" tests what is limiting performance
- "High-noise state" tests how to induce and remove high-noise state

### Low Frequency Correlated Noise Removal





- Test stand work by H. Chen and S. Gao showed that low-frequency correlated noise could be reduced by lowering input voltage to regulator for ASIC VDD
- Removed low frequency correlated noise in 35t detector (ELOG 8738, 8801)
  - Higher frequency correlated modes (>50kHz) remain

### "Everything Off" - Low Noise Tests

- Repeated previous "everything off" tests, also terminated control cable connectors on flange board, turned off all LV power except to a single FEMB
- Run 18396 4.7mV/fC + 2uw noise dominated by >50kHz modes

| Run   | State          | Collection<br>Noise (ENC) | Induction<br>Noise (ENC) | Collection Noise<br>11kHz Subtracted | Induction Noise<br>11kHz Subtracted |
|-------|----------------|---------------------------|--------------------------|--------------------------------------|-------------------------------------|
| 18396 | Everything Off | 1970 e-                   | 2980 e-                  | 1120 e-                              | 2000 e-                             |





#### Comparison Of >50kHz Modes - Multi-FEMBs On



 Turning on ASICs on additional FEMBs increases the number of modes seen in the FFT, consistent across all FEMBs (note this is all on the "quiet" APA)

### Adding Noise to the LV Lines

- Tried to inject pulser signal directly into LV cables connectors (ELOG 8767)
  - Pulser running at 50% duty cycle, ~35V and 35MHz into an unterminated coax cable wrapped near the LV cables/connectors
- Noise levels identical between run 18218 (before pulser) and 18222 (after pulser)

## High-Noise State >50kHz Modes



- >50kHz dominate during high-noise state, consistent across entire detector
  - Modes seen in waveform data corresponded to modes observed with spectrum analyzer attached to grid plane
- Frequencies shifted between runs (ELOG 8796)

## High-Noise State Induction/Removal

- Tried to find a reliable means of inducing high noise state on
  - Injecting pulser signal onto collection plane
  - Ramping wire-bias
  - These were not successful
- Most consistent method for inducing high-noise state was power-cycling ASICs on FEMB00 or FEMB12
  - Not 100% probability
  - Not clear why these boards are susceptible
- Generally only consistent method to get detector out of high noise state is to power-cycle FE + ADC ASICs
- On April 8, induced high-noise state by power-cycling FEMB12
  - Monitored high-noise state with spectrum analyzer attached to grid plane
  - Turned off all digital logic: FPGAs, oscillators, ADCs stop sampling with FPGA off
  - High-noise state persisted, only went away after power-cycling ASICs on FEMB12

### Summary and Plans

- Studied main TPC noise issues:
  - Low-frequency correlated noise removed, but did not improve channel noise levels
  - Channel noise levels generally dominated by >50kHz modes
  - High-noise state hard to reliably induce, generally requires power-cycling ASICs to remove
  - High noise states does not seem to be caused by digital logic
- Significant variation in noise levels and stability between APAs
  - 4-board APA had lowest noise levels, FEMB04 ran for 6 days without high-noise issue with drift + wire bias on
  - 3-board APA ASICs had to be turned off during data-taking to obtain quasi-stable noise levels
- Would like to run a few remaining noise tests remotely
  - Take data with individual ADC channels turned off
  - Terminate HV inputs into the cryostat, check noise levels
- Suggestions?

## Backup